资源类型

期刊论文 147

年份

2023 8

2022 18

2021 17

2020 6

2019 9

2018 5

2017 10

2016 14

2015 5

2014 6

2013 6

2012 7

2011 7

2010 4

2009 1

2008 4

2007 5

2006 2

2005 4

2004 1

展开 ︾

关键词

从定性到定量综合集成法 2

压水堆 2

开放的复杂巨系统 2

系统科学 2

资源潜力 2

CPR1000 1

DVD 1

QB50;ZJUCubeSat;大气阻力;编队飞行 1

三倍体 1

三相界面 1

上海横沙岛 1

严重事故 1

中医学 1

中医药现代化 1

中国致密油 1

中美对比 1

临界热流密度 1

二倍体配子 1

井壁质量 1

展开 ︾

检索范围:

排序: 展示方式:

Applications of atomic force microscopy in immunology

Jiping Li, Yuying Liu, Yidong Yuan, Bo Huang

《医学前沿(英文)》 2021年 第15卷 第1期   页码 43-52 doi: 10.1007/s11684-020-0769-6

摘要: Cellular mechanics, a major regulating factor of cellular architecture and biological functions, responds to intrinsic stresses and extrinsic forces exerted by other cells and the extracellular matrix in the microenvironment. Cellular mechanics also acts as a fundamental mediator in complicated immune responses, such as cell migration, immune cell activation, and pathogen clearance. The principle of atomic force microscopy (AFM) and its three running modes are introduced for the mechanical characterization of living cells. The peak force tapping mode provides the most delicate and desirable virtues to collect high-resolution images of morphology and force curves. For a concrete description of AFM capabilities, three AFM applications are discussed. These applications include the dynamic progress of a neutrophil-extracellular-trap release by neutrophils, the immunological functions of macrophages, and the membrane pore formation mediated by perforin, streptolysin O, gasdermin D, or membrane attack complex.

关键词: cellular mechanics     atomic force microscopy     neutrophil extracellular trap     macrophage phagocytosis     pore formation    

Analyzing the characterization of pore structures and permeability of diesel contaminated clays under

《结构与土木工程前沿(英文)》   页码 1264-1280 doi: 10.1007/s11709-023-0921-x

摘要: In this study, mercury intrusion porosimetry (MIP) and X-ray micro-computed tomography (XRμCT) were used to characterize the pore structures and investigate the permeability characteristics of clay after aging and contamination with diesel. The results of the MIP tests showed that aging leads to reductions in porosity and average diameter, as well as an increase in tortuosity. The XRμCT analysis yielded consistent results; it showed that aging renders pores more spherical and isotropic and pore surfaces smoother. This weakens the pore connectivity. Micromorphological analysis revealed that aging led to the rearrangement of soil particles, tighter interparticle overlapping, and a reduction in pore space. The combination of MIP and XRμCT provided a comprehensive and reliable characterization of the soil pore structure. An increased diesel content increased the porosity and average diameter and reduced the tortuosity of the pores. Mechanistic analysis showed that aging weakens interparticle cohesion; this causes large agglomerates to break down into smaller agglomerates, resulting in a tighter arrangement and a subsequent reduction in porosity. An increase in diesel content increases the number of large agglomerates and pore spaces between agglomerates, resulting in increased porosity. Both aging and diesel content can weaken the permeation characteristics of soil.

关键词: MIP     XRμCT     aging     diesel content     pore structure     permeability characteristics    

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 897-908 doi: 10.1007/s11705-021-2127-x

摘要: Catalyst particle shapes and pore structure engineering are crucial for alleviating internal diffusion limitations in the hydrodesulfurization (HDS)/hydrodenitrogenation (HDN) of gas oil. The effects of catalyst particle shapes (sphere, cylinder, trilobe, and tetralobe) and pore structures (pore diameter and porosity) on HDS/HDN performance at the particle scale are investigated via mathematical modeling. The relationship between particle shape and effectiveness factor is first established, and the specific surface areas of different catalyst particles show a positive correlation with the average HDS/HDN reaction rates. The catalyst particle shapes primarily alter the average HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. An optimal average HDS/HDN reaction rate exists as the catalyst pore diameter and porosity increase, and this optimum value indicates a tradeoff between diffusion and reaction. In contrast to catalyst particle shapes, the catalyst pore diameter and the porosity of catalyst particles primarily alter the surface HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. This study provides insights into the engineering of catalyst particle shapes and pore structures for improving HDS/HDN catalyst particle efficiency.

关键词: hydrodesulfurization     hydrodenitrogenation     particle shape     pore structure    

Uncoupled state space solution to layered poroelastic medium with anisotropic permeability and compressible pore

Zhiyong AI, Wenze ZENG, Yichong CHENG, Chao WU

《结构与土木工程前沿(英文)》 2011年 第5卷 第2期   页码 171-179 doi: 10.1007/s11709-011-0103-0

摘要: This paper presents an uncoupled state space solution to three-dimensional consolidation of layered poroelastic medium with anisotropic permeability and compressible pore fluid. Starting from the basic equations of poroelastic medium, and introducing intermediate variables, the state space equation usually comprising eight coupled state vectors is uncoupled into two sets of equations of six and two state vectors in the Laplace-Fourier transform domain. Combined with the continuity conditions between adjacent layers and boundary conditions, the uncoupled state space solution of a layered poroelastic medium is obtained by using the transfer matrix method. Numerical results show that the anisotropy of permeability and the compressibility of pore fluid have remarkable influence on the consolidation behavior of poroelastic medium.

关键词: uncoupled state space solution     layered poroelastic medium     three-dimensional consolidation     anisotropic permeability     compressible pore fluid    

Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1419-1

摘要:

• Pore structure affects biologically activated carbon performance.

关键词: Granular activated carbon     Biologically activated carbon filter     Bacterial community structure     Pore structure    

Effect of catalyst layer mesoscopic pore-morphology on cold start process of PEM fuel cells

Ahmed Mohmed DAFALLA, Fangming JIANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 460-472 doi: 10.1007/s11708-021-0733-4

摘要: Water transport is of paramount importance to the cold start of proton exchange membrane fuel cells (PEMFCs). Analysis of water transport in cathode catalyst layer (CCL) during cold start reveals the distinct characteristics from the normal temperature operation. This work studies the effect of CCL mesoscopic pore-morphology on PEMFC cold start. The CCL mesoscale morphology is characterized by two tortuosity factors of the ionomer network and pore structure, respectively. The simulation results demonstrate that the mesoscale morphology of CCL has a significant influence on the performance of PEMFC cold start. It was found that cold-starting of a cell with a CCL of less tortuous mesoscale morphology can succeed, whereas starting up a cell with a CCL of more tortuous mesoscale morphology may fail. The CCL of less tortuous pore structure reduces the water back diffusion resistance from the CCL to proton exchange membrane (PEM), thus enhancing the water storage in PEM, while reducing the tortuosity in ionomer network of CCL is found to enhance the water transport in and the water removal from CCL. For the sake of better cold start performance, novel preparation methods, which can create catalyst layers of larger size primary pores and less tortuous pore structure and ionomer network, are desirable.

关键词: cold start     energy conversion     fuel cells     mesoscale morphology     tortuosity     water management    

polybenzoxazine-based carbon microspheres with nitrogen functionalities: Effects of mixed solvents on pore

Uthen Thubsuang, Suphawadee Chotirut, Apisit Thongnok, Archw Promraksa, Mudtorlep Nisoa, Nicharat Manmuanpom, Sujitra Wongkasemjit, Thanyalak Chaisuwan

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1072-1086 doi: 10.1007/s11705-019-1899-8

摘要: In this study, polybenzoxazine (PBZ)-based carbon microspheres were prepared via a facile method using a mixture of formaldehyde (F) and dimethylformamide (DMF) as the solvent. The PBZ microspheres were successfully obtained at the F/DMF weight ratios of 0.4 and 0.6. These microspheres exhibited high nitrogen contents after carbonization. The microstructures of all the samples showed an amorphous phase and a partial graphitic phase. The porous carbon with the F/DMF ratio of 0.4 showed significantly higher specific capacitance (275.1 F g ) than the reference carbon (198.9 F g ) at 0.05 A g . This can be attributed to the synergistic electrical double-layer capacitor and pseudo-capacitor behaviors of the porous carbon with the F/DMF ratio of 0.4. The presence of nitrogen/oxygen functionalities induced pseudo-capacitance in the microspheres, and hence increased their total specific capacitance. After activation with CO , the specific surface area of the carbon microspheres with the F/DMF ratio of 0.4 increased from 349 to 859 m g and the specific capacitance increased to 424.7 F g . This value is approximately two times higher than that of the reference carbon. The results indicated that the F/DMF ratio of 0.4 was suitable for preparing carbon microspheres with good supercapacitive performance. The nitrogen/oxygen functionalities and high specific surface area of the microspheres were responsible for their high capacitance.

关键词: PBZ     carbon     porous materials     microsphere     supercapacitor    

Pore-scale simulation of water/oil displacement in a water-wet channel

Jin Zhao, Guice Yao, Dongsheng Wen

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 803-814 doi: 10.1007/s11705-019-1835-y

摘要: Water/oil flow characteristics in a water-wet capillary were simulated at the pore scale to increase our understanding on immiscible flow and enhanced oil recovery. Volume of fluid method was used to capture the interface between oil and water and a pore-throat connecting structure was established to investigate the effects of viscosity, interfacial tension (IFT) and capillary number ( ). The results show that during a water displacement process, an initial continuous oil phase can be snapped off in the water-wet pore due to the capillary effect. By altering the viscosity of the displacing fluid and the IFT between the wetting and non-wetting phases, the snapped-off phenomenon can be eliminated or reduced during the displacement. A stable displacement can be obtained under high number conditions. Different displacement effects can be obtained at the same number due to its significant influence on the flow state, i.e., snapped-off flow, transient flow and stable flow, and ultralow IFT alone would not ensure a very high recovery rate due to the fingering flow occurrence. A flow chart relating flow states and the corresponding oil recovery factor is established.

关键词: VOF     pore scale     immiscible displacement     EOR     snap-off     Ca    

Time-varying formation tracking for uncertain second-order nonlinearmulti-agent systems

Mao-peng RAN, Li-hua XIE, Jun-cheng LI

《信息与电子工程前沿(英文)》 2019年 第20卷 第1期   页码 76-87 doi: 10.1631/FITEE.1800557

摘要:

Our study is concerned with the time-varying formation tracking problem for second-order multi-agent systems that are subject to unknown nonlinear dynamics and external disturbance, and the states of the followers form a predefined time-varying formation while tracking the state of the leader. The total uncertainty lumps the unknown nonlinear dynamics and the external disturbance, and is regarded as an extended state of the agent. To estimate the total uncertainty, we design an extended state observer (ESO). Then we propose a novel ESO based time-varying formation tracking protocol. It is proved that, under the proposed protocol, the ESO estimation error and the time-varying formation tracking error can be made arbitrarily small. An application to the target enclosing problem for multiple unmanned aerial vehicles (UAVs) verifies the effectiveness and superiority of the proposed approach.

关键词: Multi-agent system     Time-varying formation     Formation tracking     Nonlinear dynamics     Extended state observer (ESO)    

Influence of pore size and membrane surface properties on arsenic removal by nanofiltration membranes

Nathalie Tanne, Rui Xu, Mingyue Zhou, Pan Zhang, Xiaomao Wang, Xianghua Wen

《环境科学与工程前沿(英文)》 2019年 第13卷 第2期 doi: 10.1007/s11783-019-1105-8

摘要:

Four NF membranes were compared regarding arsenate rejection and their properties.

Rejection of arsenate had no relationship with membrane pore size.

A more negative surface charge was favorable for arsenate rejection at neutral pH.

A severe membrane fouling could lead to a great reduction of arsenic rejection.

关键词: Arsenate     Nanofiltration     Drinking water     Membrane property     Membrane fouling    

3D finite element prediction of chip flow, burr formation, and cutting forces in micro end-milling of

A. DAVOUDINEJAD, P. PARENTI, M. ANNONI

《机械工程前沿(英文)》 2017年 第12卷 第2期   页码 203-214 doi: 10.1007/s11465-017-0421-6

摘要:

Predictive models for machining operations have been significantly improved through numerous methods in recent decades. This study proposed a 3D finite element modeling (3D FEM) approach for the micro end-milling of Al6061-T6. Finite element (FE) simulations were performed under different cutting conditions to obtain realistic numerical predictions of chip flow, burr formation, and cutting forces. FE modeling displayed notable advantages, such as capability to easily handle any type of tool geometry and any side effect on chip formation, including thermal aspect and material property changes. The proposed 3D FE model considers the effects of mill helix angle and cutting edge radius on the chip. The prediction capability of the FE model was validated by comparing numerical model and experimental test results. Burr dimension trends were correlated with force profile shapes. However, the FE predictions overestimated the real force magnitude. This overestimation indicates that the model requires further development.

关键词: 3D finite element modeling     micro end-milling     cutting force     chip formation     burr formation    

Mechanistic insight into the biofilm formation and process performance of a passive aeration ditch (PAD

《环境科学与工程前沿(英文)》 2022年 第16卷 第7期 doi: 10.1007/s11783-021-1494-3

摘要:

• A Passive Aeration Ditch was developed to treat decentralized wastewater.

关键词: Decentralized wastewater     Passive aeration ditch     Biofilm formation     C/N ratio     Salinity     Model simulation    

Is atmospheric oxidation capacity better in indicating tropospheric O formation?

《环境科学与工程前沿(英文)》 2022年 第16卷 第5期 doi: 10.1007/s11783-022-1544-5

摘要:

● This study summarizes and evaluates different approaches that indicate O3 formation.

关键词: O3     AOC     O3 formation regime    

Formation mechanism and modeling of surface waviness in incremental sheet forming

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0679-1

摘要: Improving and controlling surface quality has always been a challenge for incremental sheet forming (ISF), whereas the generation mechanism of waviness surface is still unknown, which impedes the widely application of ISF in the industrial field. In this paper, the formation mechanism and the prediction of waviness are both investigated through experiments, numerical simulation, and theoretical analysis. Based on a verified finite element model, the waviness topography is predicted numerically for the first time, and its generation is attributed to the residual bending deformation through deformation history analysis. For more efficient engineering application, a theoretical model for waviness height is proposed based on the generation mechanism, using a modified strain function considering deformation modes. This work is favorable for the perfection of formation mechanism and control of surface quality in ISF.

关键词: surface waviness     incremental sheet forming     numerical simulation     formation mechanism     deformation history    

New insights into the formation of ammonium nitrate from a physical and chemical level perspective

《环境科学与工程前沿(英文)》 2023年 第17卷 第11期 doi: 10.1007/s11783-023-1737-6

摘要:

● Factor analysis of ammonium nitrate formation based on thermodynamic theory.

关键词: Ammonium nitrate formation     Thermodynamic theory     Aerosol liquid water content     Source apportionment    

标题 作者 时间 类型 操作

Applications of atomic force microscopy in immunology

Jiping Li, Yuying Liu, Yidong Yuan, Bo Huang

期刊论文

Analyzing the characterization of pore structures and permeability of diesel contaminated clays under

期刊论文

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation

期刊论文

Uncoupled state space solution to layered poroelastic medium with anisotropic permeability and compressible pore

Zhiyong AI, Wenze ZENG, Yichong CHENG, Chao WU

期刊论文

Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics

期刊论文

Effect of catalyst layer mesoscopic pore-morphology on cold start process of PEM fuel cells

Ahmed Mohmed DAFALLA, Fangming JIANG

期刊论文

polybenzoxazine-based carbon microspheres with nitrogen functionalities: Effects of mixed solvents on pore

Uthen Thubsuang, Suphawadee Chotirut, Apisit Thongnok, Archw Promraksa, Mudtorlep Nisoa, Nicharat Manmuanpom, Sujitra Wongkasemjit, Thanyalak Chaisuwan

期刊论文

Pore-scale simulation of water/oil displacement in a water-wet channel

Jin Zhao, Guice Yao, Dongsheng Wen

期刊论文

Time-varying formation tracking for uncertain second-order nonlinearmulti-agent systems

Mao-peng RAN, Li-hua XIE, Jun-cheng LI

期刊论文

Influence of pore size and membrane surface properties on arsenic removal by nanofiltration membranes

Nathalie Tanne, Rui Xu, Mingyue Zhou, Pan Zhang, Xiaomao Wang, Xianghua Wen

期刊论文

3D finite element prediction of chip flow, burr formation, and cutting forces in micro end-milling of

A. DAVOUDINEJAD, P. PARENTI, M. ANNONI

期刊论文

Mechanistic insight into the biofilm formation and process performance of a passive aeration ditch (PAD

期刊论文

Is atmospheric oxidation capacity better in indicating tropospheric O formation?

期刊论文

Formation mechanism and modeling of surface waviness in incremental sheet forming

期刊论文

New insights into the formation of ammonium nitrate from a physical and chemical level perspective

期刊论文